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ABSTRACT

Training Large Language Models (LLMs) is a costly and lengthy process. Besides, when
trained on a particular dataset, the model loses a big part of its generalizability. We pro-
pose a novel method of context attribution for the transformer model that proves to be
more efficient and generalizable. We show that in an example of a fake news detection
task, utilizing three distinct datasets and outperforming the baseline model in both the
same dataset and cross-dataset zero-shot test. Particularly, with our method, we observe
improvement by 15% in terms of accuracy and by 18% in terms of F1 score on the Covid
Fake dataset, 3.5% of accuracy and 6% on F1 with the LIAR dataset, 23% of accuracy
and 25% of F1 on Kaggle Fake News Dataset, and 5% accuracy and 25% of F1 on Fake
News Net. All results are calculated compared to the BERT model with a fine-tuned clas-
sification layer for the fake detection task. In a cross-dataset zero-shot test using fine-tuned
Fake News Net dataset to predict Covid Fake data, we observe 5% accuracy and 25% F1
boost. We also introduce a novel loss function with corresponding auxiliary metrics. This
loss shows better generalizibility properties and faster convergence. It also stabilizes the
training stage, producing smoother and more reliable training curves. Besides, we show
that using our model, one can see if the dataset is descriptive of the domain area or not by
measuring how well it generalizes across topics and datasets.

1 INTRODUCTION

Training Large Language Models (LLMs) is a very expensive and lengthy process. Besides, when trained
on a particular dataset, the model loses much of its generalizability. As a potential solution to the problem,
we propose a new framework that is used with transformer (Vaswani et al., 2017) architecture in order
to improve results not only for the specific task but with a great effect of generalizibility. We call this
framework a Context Attribution Model (CAM) and show that using it instead of a classification layer in
transformer models such as BERT (Devlin et al., 2019), DistilBERT (Sanh et al., 2019), XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019) and others is a way of increasing models’ performance.

2 DATASETS

For this research, we utilize four different datasets of fake news 3. Three of them are binary labels: Fake
COVID (Patwa et al., 2020), Fake News Kaggle (Lifferth, 2018), FakeNewsNet (Shu et al., 2018), and one
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contains multiple labels LIAR (multi-label) (Wang, 2017). So, we prove that our model evaluates better in
both binary and multi-label approaches.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Consider a large language model that takes a document d = [t1, t2, ..., tT ] = [ti], i.e., a sequence of tokens
of length T , as input and produces a sequence of contextual embedding for each token in N -dimensional
vector space, RN . We can define such language model as: E = LLM([ti]) = (e⃗1, e⃗2, e⃗3, ..., e⃗nd

) , where
e⃗k is in RN .

Any categorical label is a concept that can have multiple attributes representing it. For example, the label
“fake” can be attributed to terms or a set of concepts that represent or contextualize the fake pieces of news.
On that idea, we extrapolate the categorical label y(i) as a spectrum for several concept attribution terms
(i.e., synonyms representing the concept), Cy(i) = c1, c2, c3, . . . , cmC

, such that; ∀i∃j : ATTR(C(j), y(i)),
meaning - each categorical label has at least one concept attribution term. Thus a given classification task
can be expressed as, τ = τ1, τ2, τ3, . . . , τlτ , comprising subtask, ti for each label y(i), of attributing the
document [d] by learning the attribution transformation function:

Cy(i) = ATTR(E, Ty(i))

Based on these assumptions we define the following optimization task: there exists a learnable transforma-
tion tensor, Ty(i) , for each label y(i) such that it can operate on LLM([ti]) token representations e⃗k for a
given document [d] to project those tokens on to an abstract concept space. The tensor Ty(i) can be optimized
using customized loss functions during the training for a classification task. Vectors in the concept space can
be used as the attributions in the downstream tasks to improve the discriminator function’s performance and
provide generalizability for the classification of LLM([ti]).

3.2 ALGORITHM PROPOSAL

We find projection of all document tokens, collectively defined as E, by applying attribution transformation
operator, Cy(i) = ATTR(E, Ty(i)), where ET×n, Tn×|C

y(i) | =⇒ PT×|C
y(i) |. Py(i) - is the projection of

E using learned tensor Ty(i) As our hypothesis states, to use the concept attribution vectors in the subspace

R
|C

y(i) | for the downstream tasks, we apply the tanh normalization function. This helps us to scale the
subspace vector components within a bounded region of [−1,+1]. Thus each token in LLM([ti]) will have
a concept space vector p⃗y(i) in R

|C
y(i) |, where each component of the vector represents the attribution score

for the respective concept 1.

4 RESULTS

We prove the efficiency of our novel framework via multiple benchmarks. Our data comes from different
sources, such as Twitter, political websites, news websites, and more. Our main contributions include:

• Demonstration of a significant boost in all metrics for the task of fake news classification

1Full derivation of the attribution function and details of the auxiliary loss computation are provided in Appendix A
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Table 1: Invidual Dataset Experimental Results
Data Architecture # Dim. Accuracy CS Accuracy F1 CS F1
Fake COVID News BERT N/A 0.7145 N/A 0.6966 N/A

CAM-BERT 64 0.8645 0.7743 0.8627 0.7637
Liar (multi-label) BERT N/A 0.2221 N/A 0.1211 N/A

CAM-BERT 64 0.2580 0.2362 0.2034 0.1590
Liar (binary-label) BERT N/A 0.5666 N/A 0.3617 N/A

CAM-BERT 64 0.6267 0.5877 0.6002 0.5855
Kaggle Fake News BERT N/A 0.6550 N/A 0.6337 N/A

CAM-BERT 128 0.8868 0.6436 0.8859 0.5900
Fake News Net BERT N/A 0.7548 N/A 0.4302 N/A

CAM-BERT 128 0.8028 0.7131 0.6833 0.6302

• Our approach outperforms existing solutions in cross-dataset zero-shot evaluations

• We achieve stabilization of the training process, ensuring consistent and reliable model performance
over time

We use the datasets provided in the table 3 for the evaluation. All of our evaluations are based on the
BERT transformer architecture. We train the model on different data and test it through different domains
(e.g., training on political news and testing on COVID-related news). We also show that by using the CAM
Framework, we don’t need to train the whole underlying model. With CAM-Model fine-tuning, we achieve
performance close to the entire model training but with far less memory consumption during training and
without the loss in generalizability.

4.1 EVALUATION METRICS

As a standard measure, we report accuracy and F1 Macro score, as well as precision and recall. Due to the
nature of our novel loss, we also introduce additional metrics: Concept Space Accuracy and Concept Space
F1. This is evaluated as accuracy and F1-score, where the label is chosen based on the tanh normalization
between concept spaces (the label corresponding to the closest concept space is assigned2). We obtain two
latent representations after projecting the transformer embedding onto the concept spaces. On the means of
these representation vectors, we apply tanh to obtain normalized values, and based on the concept proximity,
space is assigned. The interpretation of the CS Accuracy and CS F1 is exactly the same as for the standard
Accuracy and F1, only calculation changes.

4.2 EXPERIMENTAL RESULTS

4.2.1 INVIDIVIDUAL DATASET EVALUATION, CAM-BERT VS BERT

After fine-tuning the default BERT and various configurations of CAM-BERT on all of the datasets that we
select as our benchmarks, we compare them in the table 1 3. This experiment set proves that our model is
superior if used for the same dataset. We also claim it is superior and generalizes much better than fine-tuned
BERT.

2Review Appendix A section 2 for more details on how we calculate these metrics
3This is a truncated table with the most important details, please find the complete result in Appendix A 4
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Table 2: Cross-dataset Experimental Results
(Train) → (Test) Model # Dims. Accuracy CS Accuracy F1 CS F1
(Gossip) → (CovidFake) BERT N/A 0.5234 N/A 0.3436 N/A

CAM-BERT 3 0.5234 0.6145 0.3436 0.6052
(Gossip) → (Politifact) BERT N/A 0.5909 N/A 0.3714 N/A

CAM-BERT 128 0.6941 0.6468 0.6395 0.6155
(NewsNet) → (CovidFake) BERT N/A 0.5234 N/A 0.3436 N/A

CAM-BERT 64 0.5482 0.6191 0.4064 0.6116

4.2.2 CROSS-DATASET EVALUATION, CAM-BERT VS BERT

We define labels in the following manner: 1 - stands for fake for all of the datasets, and 0 - encodes true.
By doing that, we ensure that the evaluation is consistent so that we can test it in a zero-shot manner. For
the cross-dataset case 2 4 we see that the best-performing model is the one with 128 latent dimensions. It
could capture the most context attributions of the fake and non-fake news. The performance gain by using
the CAM model compared to BERT is evident since in all of the cases without any model retraining, by only
doing fine-tuning, we achieve a performance boost of 25% on the F1-score.

4.3 ABLATION STUDY OF THE INTER-SPACE AND INTRA-SPACE LOSSES

We test two situations for the auxiliary losses. In the first set of experiments, Loss is defined as a weighted
sum of the Cross-Entropy Loss with the Auxiliary Losses. In the other set of experiments, we exclusively
train the Inter-Space and Intra-Space objective functions 5. From this study, We conclude that sometimes
training only inter-space and intra-space objectives may lead to better results and faster convergence, also
proving better generlizability without utilizing additional layers.

Figure 1: Ablation study comparison of BERT vs. CAM-BERT with Auxiliary Losses and Auxiliary Metrics

4This is a truncated table with the most important details, please find the complete result in Appendix A 5
5The results are available in Appendix A 6, 7, 1

4



5 CONCLUSION

In summary, this study concentrated on a new approach to concept embedding for classification in the domain
of automated fake news detection using language models. The research involved conducting experiments to
validate the effectiveness of the suggested technique in multiple scenarios with the same dataset and cross-
dataset. We have also introduced a novel loss function that proves to be efficient for the given task and
allows better generalizability, faster convergence, and more stable and reliable training. This loss function
and the model architecture led to the definition of Concept Space metrics, such as CS Accuracy and CS F1.
We explain how to evaluate those and how they help us better understand and utilize the CAM Framework.
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A APPENDIX

A.1 DATASETS

Table 3: Benchmarks Tested
Dataset Total true news Total fake news
Fake COVID (Patwa et al., 2020) 3,360 3,060
LIAR (multi-label) (Wang, 2017) 6,400 6,400
LIAR (binary-label) 6,400 6,400
Fake News Kaggle (Lifferth, 2018) 10,387 10,413
FakeNewsNet (Shu et al., 2018) 18,000 6,000

A.2 ATTRIBUTION FUNCTION AND AUXILIARY LOSSES

The transformation function, ATTR(E, Ty(i)) is computed as follows:

• Linear Transformation: for each attribution for the concept, Cy(i) = c1, c2, c3, . . . , cmC
we per-

form a dot product with all tokens resulting in, Py(i) = E × Ty(i)

• Normalization Constraints: As our hypothesis states, to use the concept attribution vectors in the
subspace R

|C
y(i) | for the downstream tasks, we apply the tanh normalization function. This helps

us to scale the subspace vector components within a bounded region of [−1,+1]. Thus, we define:

ATTR(E, Ty(i)) = tanh[∀j,k(Py(i))] = tanh[∀j,k(E × Ty(i))]

Thus, each token in LLM([d]) will have a concept space vector p⃗y(i) in R
|C

y(i) |, where each
component of the vector represents the attribution score for the respective concept to the token.

• Regularization And Generalization Terms: We define these terms to avoid overfitting and to
achieve generalizability as follows:

w(θ) =
1

|Cy(i) | · T
∑
∀j,t

tanh[Pj,t])

J1(θ) = (L · [
|C

y(i) |∑
k=1

(1− w(θ)] + (1− L) · [
|C

y(i) |∑
k=1

(1 + w(θ))]

Where L is a vector of labels where each label is in 1 to 1 correspondence with the number of
concept spaces.

J2(θ) =

|C
y(i) |∑

k=1

1∑n
cj∈C

yk
V ar[cj ]

A.3 TRAINING OBJECTIVE

As defined in the previous section, we use auxiliary losses in conjunction with the main Cross Entropy Loss
function. The final form of an objective function is as follows:
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loss = CrossEntropyLoss(X, y|θ) + λ1J1(Py(i) , y|θ) + λ2J2(Py(i) |θ)

Where λ1 and λ2 are the weights of the auxiliary losses. Setting λ2 to high values would mean more robust
regularization of the intra-space loss. This loss ensures that the set of concepts describing the concept space
does not converge into a single representation. Setting λ1 to higher values would make inter-space loss
dominant compared to Cross Entropy. This type of behavior is unique to each specific use case. In the
experiment section, we show in some instances, optimizing Concept Spaces representation also optimizes
the target logits. However, this might not always be the case.

We provide an illustration to describe the architecture and show which particular parts are used for the loss
evaluation in fig 2.

Figure 2: CAM-Model diagram with specifying outputs used for loss components computation

A.4 CONTEXT ATTRIBUTION MODEL EXPLAINED

Previously, we have introduced the Auxiliary Metrics, which help us describe and evaluate how our model
performs. The reason these metrics are optimized is based on the definition of the loss function. Let us define
the goal of the optimization for the inter-space loss J1(θ), introduced in the previous section. In the model,
we train transformation tensor Ty(i) for each label y(i). Each label is assigned a unique concept space that
would attribute the context of this label. For instance, the ”fake” concept is assigned to one concept space,
and the ”non-fake” concept is assigned to another concept space 2 (note that in the general case, we can have
arbitrarily many labels, each assigned with specific concept space, attributing its context).

The goal of this model is to extend the existing architecture, so after we have attributed the contexts with
some tensor transformation, we want the model to make a decision taking both attributions into account. For
that, we introduce the Space Mixer layer. It combines the output of the concepts and learns to attribute given
text to the specific label. However, we hypothesize that a decision can be made solely based on the context
attribution of the token embeddings on each of the concept spaces.
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A.4.1 CALCULATING CS ACCURACY AND CS F1

The main goal of J1(θ) is to ensure that the projections on correct and incorrect concept spaces are highly
polarized. Specifically, we would want that when the embeddings are projected on the correct concept
space (fake concept space for the fake piece of news), we would like that representation to approach certain
polarization. When this same fake embedding is projected onto the non-fake concept space, we would like
this polarization to be orthogonal.

This is achievable due to the defined tanh normalization that we use in the concept space projection. Based
on the loss definition and the fact that the values of the projection dimensions are bounded between −1
and 1, we state that correct representations will have a representation close to the point [1, 1, ..., 1], while
incorrect representations will look like [−1,−1, ...,−1] (this is exactly what the definition of the inter-space
loss tells us). If that is the case, then the mean of the correct representation would also approach 1 for that
case (note, by ”correct” here, we mean the one that matches the concept space assigned with a label to the
underlying true label of the embeddings that is being processed).

With that, we have a criteria of label assigning. After projecting embeddings on the concept spaces, take the
one that has the highest mean of the representation vectors. This would also mean that the produced context
attribution closely attributes to this corresponding concept space or label. Formally:

predcam = argmax
i∈|L|

[
1

T · |Cy(i) |

T,|C
y(i) |∑

t,k

Cyi [t, k]]

It is clear that when evaluating this, we do not use the space mixer or anything after that. These metrics are
designed to give us an idea of why the final model with auxiliary losses works well and generalizes much
better. Training this loss not only gives some very good results in both the same dataset and cross-dataset
tests but also converges at much higher rates. This metric is a good measurement of our generalizability.
To prove that, one can find the experiments we run and see that sometimes, when we make zero-shot tests,
predictions provided by the concept spaces only, without a space mixer, are more accurate. That means that
by just attributing the context, we capture the intricate structure of the problem rather than the structure of
the certain dataset.
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A.5 FULL PERFORMANCE COMPARATIVE STUDY

Table 4: Same Dataset Experimental Results
Data Architecture # Dim. Accuracy CS Accuracy F1 CS F1
Fake COVID News BERT N/A 0.7145 N/A 0.6966 N/A

CAM-BERT 3 0.7949 0.5234 0.7828 0.3436
CAM-BERT 64 0.8645 0.7743 0.8627 0.7637
CAM-BERT 128 0.8808 0.6528 0.8797 0.5967

Liar (multi-label) BERT N/A 0.2221 N/A 0.1211 N/A
CAM-BERT 3 0.2362 0.1824 0.1540 0.1079
CAM-BERT 64 0.2580 0.2362 0.2034 0.1590

Liar (binary-label) BERT N/A 0.5666 N/A 0.3617 N/A
CAM-BERT 3 0.5900 0.5838 0.5280 0.5825
CAM-BERT 64 0.6267 0.5877 0.6002 0.5855
CAM-BERT 128 0.6251 0.5744 0.5971 0.4194

Kaggle Fake News BERT N/A 0.6550 N/A 0.6337 N/A
CAM-BERT 3 0.8069 0.6408 0.8030 0.6396
CAM-BERT 64 0.8685 0.6834 0.8672 0.6497
CAM-BERT 128 0.8868 0.6436 0.8859 0.5900

Fake News Net BERT N/A 0.7548 N/A 0.4302 N/A
CAM-BERT 3 0.7557 0.2732 0.4336 0.2400
CAM-BERT 64 0.7955 0.6468 0.6654 0.6090
CAM-BERT 128 0.8028 0.7131 0.6833 0.6302

Table 5: Cross-dataset Experimental Results
(Train) → (Test) Model # Dims. Accuracy CS Accuracy F1 CS F1
(Gossip) → (CovidFake) BERT N/A 0.5234 N/A 0.3436 N/A

CAM-BERT 3 0.5234 0.6145 0.3436 0.6052
CAM-BERT 64 0.5375 0.6064 0.3806 0.5874
CAM-BERT 128 0.5373 0.5691 0.3797 0.4712

(Gossip) → (Politifact) BERT N/A 0.5909 N/A 0.3714 N/A
CAM-BERT 3 0.5909 0.4403 0.3714 0.3699
CAM-BERT 64 0.6695 0.6259 0.6085 0.6258
CAM-BERT 128 0.6941 0.6468 0.6395 0.6155

(NewsNet) → (CovidFake) BERT N/A 0.5234 N/A 0.3436 N/A
CAM-BERT 3 0.5234 0.6024 0.3436 0.5881
CAM-BERT 64 0.5482 0.6191 0.4064 0.6116
CAM-BERT 128 0.5480 0.5956 0.4056 0.5354
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A.6 INTER-SPACE AND INTRA-SPACE LOSSES PERFORMANCE STUDY

Note that sometimes, when we only use Inter-Space and Intra-Space loss, we still report Accuracy and F1,
even though these are not optimized during training. This is just to show that sometimes optimizing Concept
Spaces is the same as optimizing the standard model output layer. On 2, we have shown where each loss
is applied. From there, one may see that the Space Mixer weights and classification layer weights are not
optimized by Intra-space and Inter-space losses.

Table 6: Evaluation of the model trained with Inter-Space and Intra-Space Losses only (same dataset)
Data # Dims. Accuracy CS Accuracy F1 CS F1 Precision Recall

GossipCop 3 0.7566 0.7053 0.4307 0.6387 0.3783 0.5000
64 0.2818 0.6857 0.2538 0.6366 0.5683 0.5175
128 0.7448 0.7442 0.4436 0.6522 0.4861 0.4985

Fake News Net 3 0.7548 0.6196 0.4302 0.5962 0.3774 0.5000
64 0.7815 0.7055 0.6016 0.6325 0.7203 0.5928
128 0.7973 0.7321 0.6703 0.6370 0.7350 0.6500

Table 7: Evaluation of the model trained with Inter-Space and Intra-Space Losses only (cross-dataset)
(Train) → (Test) # Dims. Loss Accuracy CS Accuracy F1 CS F1

(Gossip) → (CovidFake) 3 0.7034 0.5234 0.5292 0.3436 0.3606
64 0.6892 0.4759 0.5967 0.3238 0.5549
128 0.7052 0.4401 0.5543 0.3472 0.4312

(NewsNet) → (CovidFake) 3 0.7046 0.5234 0.5379 0.3436 0.3830
64 0.6888 0.4761 0.6260 0.3238 0.6039
128 0.7055 0.4338 0.5778 0.3467 0.4927
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