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Abstract

Fine-tuning large pre-trained language models (LLMs)
on particular datasets is a commonly employed strategy
in Natural Language Processing (NLP) classification
tasks. However, this approach usually results in a loss
of models’ generalizability. In this paper, we present a
framework that allows for maintaining generalizability,
and enhances the performance on the downstream task
by utilizing task-specific context attribution. We show
that a linear transformation of the text representation
from any transformer model using the task-specific con-
cept operator results in a projection onto the latent con-
cept space, referred to as context attribution in this pa-
per. The specific concept operator is optimized during
the supervised learning stage via novel loss functions.
The proposed framework demonstrates that context at-
tribution of the text representation for each task objec-
tive can improve the capacity of the discriminator func-
tion and thus achieve better performance for the clas-
sification task. Experimental results on three datasets,
namely HateXplain, IMDB reviews, and Social Media
Attributions, illustrate that the proposed model attains
superior accuracy and generalizability. Specifically, for
the non-fine-tuned BERT on the HateXplain dataset, we
observe 8% improvement in accuracy and 10% im-
provement in F1-score. Whereas for the IMDB dataset,
fine-tuned state-of-the-art XLNet is outperformed by
1% for both accuracy and F1-score. Furthermore, in an
out-of-domain cross-dataset test, DistilBERT fine-tuned
on the IMDB dataset in conjunction with the proposed
model improves the F1-score on the HateXplain dataset
by 7%. For the Social Media Attributions dataset of
YouTube comments, we observe 5.2% increase in F1-
metric. The proposed framework is implemented with
PyTorch and will be provided open-source on GitHub.

Introduction
Currently, the domain of Language Models is one of the
most rapidly developing areas of machine learning. Trans-
former architecture (Vaswani et al. 2017) has proven itself
as a state-of-the-art approach towards the absolute major-
ity of Natural Language Processing (NLP) domains (Maia
et al. 2021). A particular strength of the language models is
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their generalizability (Swamy, Jamatia, and Gambäck 2019),
(Blackledge and Atapour-Abarghouei 2021).
By pre-training the model on a big chunk of semi-structured
data and then fine-tuning with task-specific labeled data,
we may obtain state-of-the-art performance in the problems
of classification, regression, language translation, and more.
However, the important note here is that the most crucial
pre-training stage is usually costly, and repeating it for every
new task is computationally inefficient. At the same time,
the fine-tuning only downstream task specific head of pre-
trained models is time efficient and requires much less la-
beled data, preserving models’ generalizability. On the other
hand, this part of the pipeline might be a bottleneck to the
process. Usually, single fine-tuning does not produce results
on par with the complete model adaptation via training (Pe-
ters, Ruder, and Smith 2019). Explaining and adapting the
results to the various downstream tasks is also tricky. To
avoid any confusion in this paper, we are going to use term
”training” or ”model adaptation” referring to the process of
full model retraining (adapting all of the weights), while for
the head-only adaptation we are going to use term ”fine-
tuning”. Fine-tuning is usually easier, faster and requires less
data.

As a potential solution to the problem, we propose a
novel method of model fine-tuning. We call this approach
the Space Model. The whole idea is to replace the classifi-
cation head of the transformer model with a set of concep-
tual operators, projecting the contextual embeddings of the
model to the set of concept spaces referred to as context attri-
butions. The Space model is an additional model framework
that plays the role of the pipeline’s original downstream task
head. In this work, we limit ourselves to the review of the
classification capabilities of the proposed approach, but gen-
erally, this is not a limitation to the technique in any way.

The model is designed in a way that a set of concepts
describes different classes; such a set is called the “context
attribution”. It is worth noting that we do not limit these
concepts in terms of overlapping. Some context attributions
might overlap if that makes sense in terms of the problem
solved. This paper reviews one such task where overlapping
context attributions are entirely appropriate. What we would
like to avoid is allowing multiple concepts to converge to the



same representation. For that type of regularization, we in-
troduce an additional loss called Intra-Space loss. Its goal is
to make sure concepts in the context attribution are disjoint.

As was stated previously, the Space Model is an external
framework with a set of operators on top of the transformer
model. Generally speaking, this is not limited to the trans-
former architecture either. Potentially, any technique that
can produce embeddings may be used as the Space model’s
base model, such as Word2Vec (Mikolov et al. 2013), Glove
(Pennington, Socher, and Manning 2014), or RNN (Rumel-
hart, Hinton, and Williams 1986), (Ghosh et al. 2016). Fur-
ther in this paper, whenever we refer to the base model, we
mean the model that produces the embeddings for the space
model. Some of the base models tested in this paper include
BERT (Devlin et al. 2019), DistilBERT (Sanh et al. 2019),
and XLNet (Yang et al. 2019).

The benchmarking and evaluation of the proposed solu-
tion are done with various configurations of the base models
and across multiple datasets. We test performance for the
specific task, fine-tuning the Space model for that particu-
lar downstream task, and we also test the performance of
the model on the task that is related to the original seman-
tically; however, it uses different data. The baseline for the
comparison is mainly the performance of the original base
model fine-tuned for the downstream task. During the ex-
periments, we prove that besides an evident performance
boost, the Space model also stabilizes the training process
and generalizes better for the semantically close tasks. We
also prove that the space model can achieve a significant
performance boost even when using a smaller number of pa-
rameters than the base model fine-tuned on the downstream
task.

The datasets used for benchmarking are HateXplain
(Mathew et al. 2021), IMDB reviews sentiment dataset
(Maas et al. 2011), and Social Media Attributions dataset of
YouTube comments, related to Chennai water crisis (Sarkar
et al. 2020). The main reason for choosing corresponding
datasets is that HateXplain is considered a very complex
dataset, with imbalanced data, and labels “offensive” and
“hateful” are conceptually very close. On the other hand,
IMDB sentiment reviews are a semantically close dataset
to the former one and are reasonably easily interpretable.
Such a relation is essential since we would like to test the
generalizability of the proposed technique. Besides, in the
Social Media Attributions paper, the authors apply a very
similar approach to the one proposed in this paper, however,
with additional manual labeling of the concepts and multiple
runs. We would like to show that our approach achieves su-
perior performance without additional manual labeling and
via a single pass.

The impact and novelty of this paper include:

• A novel framework for Language Model fine-tuning,
which outperforms the baseline score of the base models
such as BERT, DistilBERT, and XLNet

– For the non-pretrained BERT (only trained context at-
tribution operator) we observe 8% improvement in ac-
curacy and 10% in F1-score on HateXplain data

– For the IMDB with XLNet base model, we observe an
improvement of around 1% after full model adaptation
compared to fully trained vanilla XLNet

– Space-model with the base model as DistilBERT non-
pretrained (only trained context attribution operator) on
IMDB dataset, in a zero-shot manner outperforms basic
DistilBERT in the same manner (only head fine-tuning)
by 7% on F1-score

– Compared to the results from the Social Attribution pa-
per (with manual supervision), we observe an improve-
ment of 5.2% with our model without additional super-
vision

• A novel loss function that improves the generalization and
stabilization of the training process, improving the zero-
shot capacity of the transformers

Related work
The task of effective fine-tuning is one of the main tasks in
the modern NLP. Cheaper and faster results of great qual-
ity are very appealing and a current trend in the domain.
However, we are sourcing the inspiration for our framework
not only from the latest NLP findings. The core idea has
a root in a Psychological Belief Attribution Theory (Bem
1972), (Spilka, Shaver, and Kirkpatrick 1985). The theory
revolves around the idea of attribution of certain concepts
with corresponding behavior patterns. The concepts (some-
times also referred to as factors) may be external and in-
ternal. These factors are usually related to personal beliefs,
and they affect the decisions and behavior of an individual.
Researchers have also classified people based on these fac-
tors (e.g., pessimistic attribution, optimistic attribution, hos-
tile attribution). We try to apply the same idea to language
modeling, attributing certain concepts with class labels. In
general, the idea of measuring and researching the belief at-
tribution of language models is not novel. The authors of
(Hase et al. 2023) have not only proved that certain language
models possess the beliefs, but they have also provided met-
rics to measure such beliefs and a tool to update these be-
liefs, as well as visualization of beliefs graph.

It is very natural that semi-supervised solutions are men-
tioned when it comes to fine-tuning with the least resources.
These also mainly include ensembling to achieve regulariza-
tion when working with unsupervised data. One of the first
such approaches addressing this issue is the COREG (Zhou
and Li 2005). The technique uses two k-nearest-neighbor re-
gressors with different distance metrics to label the data. The
distance metric, in that case, would serve as the confidence
label. This approach uses a fundamental idea that some fea-
tures in some spaces are aligned with similar class labels
and are further apart from the different class labels. This is
an essential fact that is reused in the Space model.

Another later technique involves minimal supervision for
the labeling of the concept space, and then, based on this



concept space, the model can autonomously label the unla-
belled data (Chenthamarakshan et al. 2011). The key idea
here is the knowledge extraction from the manually labeled
concept space. It is claimed in the work that labeling a set
of concepts and then running an algorithm on a set of docu-
ments to label them based on these supervised concepts is a
superior technique. Our main takeaway from there is that we
can extract knowledge from the supervised concept space for
unlabelled data. Furthermore, what we would like to propose
is testing if this concept space can help us make a prediction
at the inference stage rather than during labeling.

Social Media attributions in the Context of Water Crisis
paper (Sarkar et al. 2020) is accomplishing a task very close
to the one we are dealing with. However, unlike our ap-
proach, same as the previous one, their technique requires
supervised sub-concept labeling. Besides, they measure the
similarities between sub-concepts and the attention of the
Language Model by feeding the sentence to the model multi-
ple times, each time with a new sub-concept. However, they
are using the similarity measure to find the concept sub-
space that best describes the given sentence and make the
decision based on that. Our approach does this all in one
pass and in an automated manner. We do not require manual
labeling of the concept sub-spaces. We expect to learn them
during the fine-tuning phase.

In the paper on Interacting Conceptual Spaces (Bolt et
al. 2019), the authors create all of the necessary mathemat-
ical background required to formulate the knowledge ex-
traction process from the concept space. They converge the
optimization task to the convex relations and prove that by
means of optimizing the conceptual space and merging mul-
tiple concepts (or even spaces) together, one can extract new
knowledge practical for the downstream task. They also pro-
vide an algebra language on how concepts are organized
and interact and what it means mathematically when sev-
eral concepts (or concept spaces) are combined. They put
the conceptual representations in different compacts and ex-
plore the vectors’ behavior there. This is one of the ideas we
are adopting in our paper, which we believe helps regular-
ize the network. The concept spaces are encapsulated into a
compact hypercube with the side 2. This is achieved due to
the utilization of the tanh activation, which we will review
in more detail in the methodology section.

Methodology
We are going to use the transformer architecture to extract
the contextual embeddings from the input text. However,
the methodology is not limited to transformers and may be
reused with any architecture producing some kind of embed-
dings. In this specific research, we are focusing on the BERT
family models (and some variations such as XLNet).

Context Attribution
Context attribution - is a projection of a collection of contex-
tual embeddings (vectors) or, simply, a matrix. Projection is
done via a concept operator. When we train the model, we

ensure that concept operators project disjoint concepts far
away from similar concepts. We project the sentence in mul-
tiple context attributions and then find the similarity between
the original sentence and the conceptual projections. This
similarity tells how to classify the instance correctly. Note
that in the actual implementation, we do not do the pairwise
comparisons of the similarities or any other type of process-
ing. Instead, we concatenate obtained projections into a sin-
gle tensor and feed it to the classification layer. Thus, instead
of manually defining the classification criteria, we specify it
as a set of trainable parameters.

Contextual word embeddings
As it was already stated, the only assumption we impose on
the base model is that it can create (contextual) embeddings
from the input. Let Ns be the sequence length, d be the di-
mensionality of the contextualized embedding of the model.
E = [e1, e2, ..., eNs ] ∈ RNS×d, ENs×d ∈ RNS×d is the
contexual embedding matrix.

In our research, we assume that the BERT-like models
produce this embedding. So Ns would be defined in the
range between 256 and 512 (as a maximum sequence length
used by the BERT architecture), and d would be 768 for all
of the base models and 1024 for the XLNet large.

Conceptual projections
For each of the classes in the classification problem, we as-
sume a single concept space operator. This concept space
operator transforms (projects) the contextual embeddings to
the context attribution and produces new conceptual embed-
dings. The obtained representation of the embeddings is also
called a latent representation. This representation’s dimen-
sionality is defined as the latent space (target space for the
projection). Let m be the dimensionality of the latent space.
We first define the projection operator as a matrix with train-
able parameters: Pd×m ∈ Rd×m. Thus obtained projection
matrix (context attribution) CNs×m ∈ RNs×m.

Basically, context attribution is a new representation of
the embeddings in the latent space, where the transforma-
tion operator is trained during fine-tuning. However, since
we want to obtain proximity of the contextualized embed-
ding to the context attribution, we introduce previously de-
fined tanh operation as a similarity measure.

CNs×m = tanh(ENs×d × Pd×m) (1)

tanh is applied element-wise. In that case, our conceptual
matrix is a representation of how close a certain sentence is
to the concept from the target context attribution (1 is very
close, and -1 is from an orthogonal attribution). As an exam-
ple, when we feed the word “terrible” to the context attribu-
tion that was predefined as “positive”, we expect to see -1 in
the conceptual representation and 1 for a word like “great”.

The training objective of the model is, by taking into ac-
count multiple projections of the input embeddings, to find
the projection that is most aligned with the sentence content.



The similarity measure we are using is a slight modification
of the cosine similarity, where normalizing the value by the
vectors’ norms is replaced with the tanh.

tanh(x) =
ex − e−x

ex + e−x
(2)

Similarly to the original paper introducing LSTM
(Hochreiter and Schmidhuber 1997) , we use tanh to control
the flow of the information in the network. It squashes the
range, centers the values around zero, and introduces non-
linearity. This has also proven to be an excellent regulariza-
tion technique, which reduces the instability, improves mod-
els’ generalizability, and improves the results. This aspect is
discussed in more detail in the results section.

Figure 1: 3D projection of the space embeddings for the 2-class
classification. After projecting the sentence onto different concept
spaces, we expect these projections to be orthogonal if the classes
are completely divergent. For the case between positive and neg-
ative sentiment, we expect that positive class projection would be
orthogonal to the negative class projection.

As a good side-effect of the tanh we add additional non-
linearity and squashing effect to the model. Thus, no ad-
ditional normalization of values is required. Besides, we
shrink our problem to the compact (hypercube with side 2,
from -1 to 1). In Figure 1, one can find a benefit from such
an approach. We can now easily interpret the outcome of
the binary classification model. The visualization provided
is the contextual embedding of the BERT model into 3-
dimensional context attribution space for the IMDB classi-
fication task (this is done for test examples, so the model is
not overfitted, and what we clearly see is the orthogonality
of the negative and positive sentiment concepts).

According to our definition, every target class has a
unique context attribution for itself. So for n classes clas-
sification problem:

Ci
Ns×m = tanh(ENs×d × P i

d×m) (3)

for i ≤ n. Where Ci and P i are namely i-th context attribu-
tion and concept projection operator.

Classification
After we have projected the embeddings to all of the context
attributions, we need to perform classification. In that case,
since every projection is a set of vectors (where each vec-
tor is a conceptual embedding with latent size m) we would
find the centroid of this representation for each context attri-
bution and then concatenate these representations. This con-
catenated representation is then fed to the single linear layer
for classification. This basically identifies the proximity of
the embedding to the corresponding context attribution. Let
ki represent i-th context attribution centroid, and ci,j j-th
conceptual embedding vector (j-column) of the i-th context
attribution Ci

Ns×m.

ki =
1

Ns
·

Ns∑
j=0

ci,j (4)

Loss function
The loss that we are optimizing is primarily the Cross-
Entropy loss. To ensure that the conceptual embeddings
don’t converge to the same embedding inside the concep-
tual space, we introduce an intra-space loss. This also adds
additional regularization and improves generalization. This
is proved during the experiments. Controlling the weight of
this loss compared to the cross entropy loss is another hyper-
parameter fine-tuning task. The intra-space loss is basically
an inverse of the variance of the vectors inside the context
attribution.

σ2 =

m∑
i=1

1

m
· (ci − ĉ)2 (5)

where ci is i-th embedding (i-th column of the context
attribution matrix) CNs×m and ĉ is the mean vector of con-
ceptual embedding matrix (column-wise).

Results
We evaluate our framework using 3 base models in 3 bench-
marks with 3 different datasets. With benchmarks, we want
to measure:

• Performance of the proposed Space Model

• Generalization property of the novel technique

• How does it compare with existing context attribution so-
lutions which involve a manual process

To achieve that, we are going to use 3 datasets, namely Ha-
teXplain, IMDB reviews sentiment dataset, and Social Me-
dia Attributions dataset of YouTube comments related to the
Chennai water crisis. IMDB sentiment reviews is a semanti-
cally close dataset to the HateXplain and is reasonably easily
interpretable. Such a relation is essential since we would like
to test the generalizability of the proposed technique. Be-
sides, in the Social Media Attributions paper, the authors do
manual labeling of the concepts and measure similarity with
the so-called Social Media Attributions; we would like to
show that our approach achieves superior performance with-
out additional manual labeling and via a single pass.



The experiments are structured in a way that we have ba-
sic experiments with smaller models and simpler tasks. Ad-
ditionally, we conducted experiments to compare the Space
Model to the state-of-the-art model of the IMDB dataset. We
also investigate and analyze various properties of the Space
Model and explore some of the hyperparameters’ usage,
with their respectful effect on the model performance. We
explore the generalization property of the model by cross-
testing it on the unseen dataset.

Preprocessing and settings

BERT is a standard model that we use as a reference and a
baseline. We only fully train the weights of this model once
when compared with the Chennai water crisis data. For all
of the other experiments, we preserve all of the generaliz-
ability and do not spend time on training. XLNet is the cur-
rent state-of-the-art transformer for multiple benchmarks; in
this specific work, we focus on the IMDB sentiment analysis
dataset. By using this model and comparing the results with
it, we want to prove that attaching the Space-model head to
virtually any current state-of-the-art transformer would sig-
nificantly boost performance.

We are not conducting any data preprocessing for either
of the datasets. We use cased models for all of the expri-
ments except for the Social Media Attributions comparison.
For the space model, the key idea is the contextual embed-
ding generation. The entity doing this in our framework is
called a base model; virtually any transformer model can
play this role. We use cased DistliBERT, cased BERT, and
cased XLNet.

Figure 2: 3D projection of the space embeddings for the 3-class
classification (HateXplain). For the 3-class, similar to the 2-class,
we expect to have 3 orthogonal projections. Here, we observe that
if we review this image in multiple projections - some projections
are clearly orthogonal, and some are more aligned. This is the ef-
fect that we have discussed previously, that contextual attributions
might have overlapping concepts.

We use the base model configuration for all of the exper-
iments except for the state-of-the-art establishment (12 lay-
ers for BERT and XLNet and 6 layers for DistilBERT). For
the state-of-the-art performance, we trained large (24 layers)
XLNet, which was used for reporting the results in the orig-
inal paper. We use the Adam optimizer with a learning rate
of 2 ·10−4 for all experiments, except for the state-of-the-art
establishment, since the original paper states that 10−5 was
used to achieve the best results. Maximum sequence length
and batch size is 256 for all of the basic experiments and is
replaced with 512 and 4, respectively, for the XLNet large
state-of-the-art results.

Since the original paper recommends using 32 as the
batch size for the IMDB benchmark for the best results, and
we could not fit that to the GPU memory, we used 8 gradi-
ent accumulation steps and adjusted the number of training
steps accordingly. Even though the result does not precisely
reproduce the original outcome, it is close, and the evident
performance boost from the space model is transparent.

For the number of latent spaces, we use three for most
experiments since this is enough to outperform significantly
and is easy to visualize. As discussed previously, when we
project the contextual embeddings onto the context attri-
bution, we expect these projections to be orthogonal if the
classes are different. That is what we observe in Figure 1
and Figure 2.

For the comparison with the Social Media Attributions,
use the latent size of 64. For the state-of-the-art results us-
ing XLNet, we use 128 as the latent space size. We use a
single Nvidia A5000 GPU for our training. Our model with
various configurations may take from 30 seconds per epoch
with DistilBERT to 25 minutes with XLNet large. A stan-
dard number of fine-tuning epochs is set to 5; however, for
the XLNet large state-of-the-art results, we used only one
epoch of training with one epoch of head fine-tuning to pre-
vent overfitting.

Evaluation Metrics
Since we are evaluating the model between multiple bench-
marks simultaneously, we want to adjust to both a per-
fectly balanced IMDB dataset and a less balanced HateX-
plain dataset. So, we report accuracy and f1-macro score.
Our loss throughout the experiments is Cross-Entropy loss,
sometimes combined with intra-space loss for better regu-
larization. We also report the weight of the Intra-space loss
in the experiments. This is usually set to a very low number
to avoid dominance over the cross-entropy loss.

Experimental Results
Fine-tuning Space Model First, we ran a set of experi-
ments on the IMDB benchmark dataset with the DistilBERT
model as a base model (Table 1). We observe that the Space
model is superior for both accuracy and f1-macro score. We
also explore the number of trained parameters. With 3-time
fewer parameters, the performance boost is already around
5% for both metrics. We also observe that with around 128
times fewer trainable parameters, the space model performs
better by almost 2%.



Dataset Model Train Params Accuracy F1-score (macro) Recall Intra-Space weight
IMDB (training) DistilBERT 592130 0.7852 0.7819 0.6614 N/A

Space Model 197122 0.7917 0.7916 0.7728 0.001
Space Model 197122 0.8322 0.8320 0.8663 0

HateXplain (zero-shot testing) DistilBERT 592130 0.6013 0.4450 0.0869 N/A
Space Model 197122 0.5821 0.5187 0.2698 0.001
Space Model 197122 0.5977 0.5040 0.2007 0

Table 1: Comparative table of the results of the Space Model in different configurations with DistilBERT on the IMDB dataset
and HateXplain dataset

Metric Space Model BERT
Accuracy 0.5296 0.4485
F1-score (macro) 0.4304 0.3314
Precision 0.5431 0.4471
Recall 0.5296 0.4485

Table 2: BERT HateXplain (3-class) evaluation

Then, we compare these results with the experiments for
a much more complex HateXplain benchmark. The choice
of the datasets is non-arbitrary in that case. We want data
to have the evident polarization between classes, which is
aligned cross-datasets, to prove the zero-short generaliza-
tion component of our approach. BERT, DistilBERT, and
XLNet are all evaluated with this benchmark against the
Space Model in a 3-class and 2-class setting.

Generalizability We take corresponding models and eval-
uate them on the HateXplain benchmark in a zero-shot man-
ner (Table 1). For the sentiment analysis, negative labels are
encoded as 0 and positive as 1; for the HateXplain, we en-
code Hateful and offensive labels as 0 and normal labels as
1. Here, we see that the Space model with intra-space loss
is a top model in terms of f1-score, while the accuracy is
the highest for the DistilBERT. However, accounting for the
dataset imbalance, we see that DistilBERT is worse in terms
of f1 by at least 6-7% and almost 4 times worse in terms of
recall. Next, we compare the BERT model with the Space
model and base BERT on the HateXplain benchmark with 3
classes. Here, we only train the classification head for BERT
and contextual attribution operators for the Space model (as
discussed previously). The results in Table 2 clearly show
that the Space Model is superior in all of the metrics by at
least 8%.

We then fine-tune the classification head and the space
model with XLNet and BERT base models for the same Hat-
eXplain benchmark (Table 5) and observe that for BERT, the
performance gap with identical training settings and identi-
cal base model is more than 16% on the f1-macro score. In
comparison, for XLNet, this gap is around 6%.

To further prove the effect of the performance boost us-
ing the space model, we do the full training of the XLNet,
a state-of-the-art model for the IMDB benchmark (Table 3).
With almost identical settings to the original paper, we ob-
tain a 0.9386 f1-score, while training the space model with
the exact same settings gives us 0.9487 (all of the other
metrics are also superior for the space model, except for

the recall, which is again very different with precision for
the vanilla model, and very close for the space model). We
observe that the space model surpasses the state-of-the-art
models in the tasks and is much more tolerant to the imbal-
anced data. The precision-recall trade-off is evident in most
of the experiments. To prove this point further, we conducted
the ablation study and researched how the space model sta-
bilizes performance during training.

Metric Space Model XLNet
Accuracy 0.9488 0.9387
F1-score (macro) 0.9487 0.9386
Precision 0.9463 0.9106
Recall 0.9516 0.9731

Table 3: State-of-the-art XLNet on IMDB

Social Media Attribution We compare our Space Model
with the Social Media Attribution and observe 5.2% F1-
score improvement on our own reproducing experiment and
almost 2% F1-score improvement compared to the best-
reported score from the original paper. The best result there
was obtained on the adapted Indian BERT, while we used
base uncased BERT without any adaptation, so this perfor-
mance boost is not exhaustive.

Metric Space-model BERT (uncased)
Accuracy 0.8309 0.8220
F1-score (macro) 0.8006 0.7484
Precision 0.7126 0.8876
Recall 0.7337 0.4674

Table 4: Social Media Attribution BERT-uncased

Regularization effect on fine-tuning
During the experiments, we observed that the space model
has a much better ratio of recall/precision, which means that
it handles imbalanced data much more efficiently. Another
observation is that adding just a space model stabilizes the
results during training, not allowing the performance to vary
a lot between iterations. Find the visualization of the abla-
tion study in Figure 3. Additionally, intra-space loss adds
more regularization and stabilization and ensures that the
concepts in the context attribution will not converge to a sin-
gle vector.



Metric Train Params Accuracy F1-score (macro) Precision Recall
Space-model (XLNet) 4622 0.8798 0.8797 0.8764 0.8824
XLNet-base-cased 1538 0.8160 0.8156 0.8421 0.7750
Space-model (BERT) 4622 0.8110 0.8108 0.8227 0.7899
BERT-base-cased 1538 0.6588 0.6555 0.6919 0.5649

Table 5: BERT and XLNet Comparison on HateXplain Dataset (2-class)

Figure 3: DistilBERT (upper part) vs DistilBERT and Space
Model (lower part) stabilization comparison

Conclusion and discussion

In conclusion, this research focused on the novel method-
ology towards conceptual embedding for classification with
Language models. As an outcome of this research, we have
conducted a set of experiments to empirically prove the effi-
ciency of the proposed technique. We have also created the
implementation of the proposed framework via PyTorch and
provided an open-source GitHub repository to incivate and
simplify future collaboration and exploration. We believe
that the potential of this approach is yet to be discovered,
and the goal of this paper was to provide some baseline ideas
and understanding.

We anticipate improvements by adding more complex
transformations after the conceptual projection phase. We
also believe that this technique should in no way be lim-
ited to classification problems only. The formulation of the
regression problem is quite straightforward but needs to be
additionally researched. With that, we also expect that 1-to-1
correspondence of the context attribution to the target class
is an artificial limitation that we hold in this paper for the
simplicity of interpretation. However, if domain knowledge
suggests that having multiple context attributions (more than
the number of classes) for the task makes sense - then this
should also be an option. We would also like to explore
further the potential of the interpretation capabilities of the
framework and how we can use it to extract knowledge from
the model.
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